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Spectre Mitigations

• Hardware Mitigations

=⇒ costly, can only protect future hardware• Software mitigations

• Program Analysis and Repair

• oo7: taint tracking
• SPECTECTOR: symbolic execution

• Compiler Countermeasures

• Intel: Fence instructions after branches
• Speculative Load Hardening: additional data dependencies
• MSVC: Fence instructions, pattern-based
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Contributions

• Method of verifying compiler-based spectre mitigations

• applicable to a variety of leakage models
• capable of verifying more mitigations

• Verify Intel’s mitigation for three leakage models
• Incompatibility between speculative load hardening and always-mispredict
semantics

• Design and verify a mitigation that could not be verified previously
• All work formalized in the Coq Proof Assistant
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Verifying SpectreMitigations: Speculative Noninterference [Guarnieri et al., 2018]

Noninterference
Same public inputs Same observations

Speculative Noninterference
Same observations

under nonspeculative
execution

Same observations
under speculative

execution
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Patrignani and Guarnieri [2021]: Verifying Mitigations Using Speculative Safety

Applying a mitigation: Compilation

Language without
speculative execution

Language with
speculative execution

• Without speculation, speculative noninterference is always satisfied
• Speculative noninterference should be preserved
• Approximate using speculative safety
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Patrignani and Guarnieri [2021]: Verifying Mitigations Using Speculative Safety

• Speculative safety only defined for constant-time leakage model

• not applicable to other leakage models

• Speculatively noninterferent code may not be speculatively safe:

read [1] x;if x ≥ 0 then read [x] y else read [x] y end;write [1] y
• not all mitigations can be verified

• Our approach does not have these limitations
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Verifying Spectre Mitigations: Preservation of Leakage Equivalence

Source Speculative Noninterference Source Property

Speculative Noninterference

Target Speculative Noninterference Target Property

Speculative Noninterference
Same observations

under nonspeculative
execution

of source program

Same observations
under speculative

execution

of mitigated program
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Preservation of Hyperproperties: Constant-Time Simulations [Barthe et al., 2018]
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Preservation of Hyperproperties: Hyper-Simulations [Rosemann, 2023]
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Leakage Equivalence as a Property of Trace Prefixes

• Traces are infinite

• Hypersimulation handles finite prefixes
=⇒ Define leakage equivalence with respect to trace prefixes

Leakage Equivalence Traces t1 and t2 are leakage equivalent iff

• for all finite prefixes p1 and p2
• when computing the leakages ℓ(p1) and ℓ(p2)
• ℓ(p1) is a prefix of ℓ(p2) or vice versa
• we can extend the prefixes such that the leakages are equal

p1 ≶+
ℓi p2
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Proving Preservation of Leakage Equivalence

a′ a′b′

a ab

α′ α′β′

α αβ

b′

≈ ≈

b

β′≈

β

≈

• Find simulation relation

• Pick source and target relations

• typically: trace prefixes should have the exact same
leakage

• Determine which source states should be related

• typically: synchronize on leakage-producing states

• Prove that source relation is satisfied after
hyper-step

• follows directly from leakage equivalence

• Prove that target relation is satisfied after hyper-step
• Conclude that target traces are leakage equivalent
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Proving Preservation of Leakage Equivalence

• From hypersimulation: target relation always holds
at some future point

• ≶+
ℓi must be satisfied at every point during execution

• Leakage equivalence is a safety hyperproperty

• ≶+
ℓi satisfied at some point

=⇒ satisfied at all prior points

• Target relation implies ≶+
ℓi

=⇒ ≶+
ℓi must hold everywhere

≶+
ℓi?

≶+
ℓi

≶+
ℓi
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Modelling Speculative Execution: Toy Language

Expr 3 e : : =n n ∈ N

| x x is a variable name
| e1 + e2 | e1 − e2 | e1 × e2 | e1 < e2 | e1 = e2 | !e

Stmt 3 s : : =skip | x := e
| fence | if e then p1 else p2 end
| read [e] x | while e do p1 finally p2 end
| write [e] x
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Modelling Speculative Execution: Speculative Semantics

• Note: we translate while to if

• Stack of states to allow rollback
• Speculation window determines how long to follow mispredicted paths
• Always-Mispredict semantics [Guarnieri et al., 2018] captures all possible
combinations of branch predictions
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Modelling Speculative Execution: Speculative Semantics

⟨
⊥ | [x 7→ −1] | [−1 7→ 42] |

if x > 0
then if x < 10

then read [x] y
else fence
end

else skip
end

⟩

no-rollback(n) JbKV = 0
⟨n | V | H | if b then p1 else p2 end; p⟩ :: S

→sp ⟨wndw(n) | V | H | p1 ++p⟩ :: ⟨decr(n) | V | H | p2 ++p⟩ :: S

AMIFFALSE if x > 0
then if x < 10

then read [x] y
else fence
end

else skip
end
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Modelling Side-Channel Vulnerabilities: Leakage Models

Leakage models: functions from sequences of states to sequences of
observations

〈V | H | while...〉 〈V | H | if...〉 〈V | H | read...〉 〈V | H | write...〉 · · ·

loop branch > read addr write addr · · ·

ℓct control flow, memory accesses
ℓlm loop headers, memory accesses

ℓmem only memory accesses
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Verifying Intel’s Mitigation

Mitigation proposed by Intel [Intel, 2018, 2021]:
Insertion of Fence instructions after every branch

Lif b then p1 else p2 end;pMfence = if b then fence; Lp1Mfence
else fence; Lp2Mfence end; LpMfenceLwhile b do p1 finally p2 end;pMfence = while b do fence; Lp1Mfence
finally fence; Lp2Mfence end; LpMfenceLs;pMfence = s; LpMfence otherwiseL[]Mfence = []
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Verifying Intel’s Mitigation

L·Mfence is proven secure under

ℓct Constant-time leakage model
(confirming result by Patrignani and Guarnieri [2021])

ℓlm Leakage model including loop headers, but not all control flow
(new result)

ℓmem Leakage model without any control flow
(new result)
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Issues with Speculative Load Hardening

Speculative Load Hardening [Carruth, 2018]:
Protect memory access with artificial data dependencies

• Special register accumulates path conditions

• data dependency on branch conditions
• detects speculative execution

• Memory accesses compute address using special register

• original address during nonspeculative execution
• known safe address during speculative execution
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Issues with Speculative Load Hardening

• In practice, data dependency should trigger rollback

• Always-Mispredict semantics do not model this
• More accurate semantics with vendor guarantees needed
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Relaxed Insertion of Fences

read [1] x;if x ≥ 0 then read [x] y else read [x] y end;write [1] y

Relaxed insertion of fences:

• At every branch, check the sequence of read and write instructions
• Insert a fence instruction if the sequences are different
• Insert a fence instruction in case of nested branches

→ Proof-of-concept implementation has some additional restrictions
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Relaxed Insertion of Fences

• Mitigated code may not be speculatively safe

• not verifiable by previous approach

• Verified under constant-time leakage model
• Restrictions can be lifted with future work

=⇒ reasonable mitigations that were not covered before
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Further Work

Patrignani and Guarnieri [2021] support

• function calls
• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware
• semantics for different spectre variations [Fabian et al., 2022]
• more precise semantics based on hardware guarantees

24



Further Work

Patrignani and Guarnieri [2021] support

• function calls

• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware
• semantics for different spectre variations [Fabian et al., 2022]
• more precise semantics based on hardware guarantees

24



Further Work

Patrignani and Guarnieri [2021] support

• function calls
• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware
• semantics for different spectre variations [Fabian et al., 2022]
• more precise semantics based on hardware guarantees

24



Further Work

Patrignani and Guarnieri [2021] support

• function calls
• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware
• semantics for different spectre variations [Fabian et al., 2022]
• more precise semantics based on hardware guarantees

24



Further Work

Patrignani and Guarnieri [2021] support

• function calls
• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware

• semantics for different spectre variations [Fabian et al., 2022]
• more precise semantics based on hardware guarantees

24



Further Work

Patrignani and Guarnieri [2021] support

• function calls
• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware
• semantics for different spectre variations [Fabian et al., 2022]

• more precise semantics based on hardware guarantees

24



Further Work

Patrignani and Guarnieri [2021] support

• function calls
• linking against attacker-defined code

Other applications:

• semantics closer to actual hardware
• semantics for different spectre variations [Fabian et al., 2022]
• more precise semantics based on hardware guarantees

24



Conclusion

Our approach

• confirms prior work [Patrignani and Guarnieri, 2021]
• enables reasoning about more leakage models

• control flow does not need to be included

• verifies mitigations that could not be verified before

• such mitigations are reasonable, not contrived examples
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Nonspeculative Semantics i

〈V | H | skip;p〉 →ns 〈V | H | p〉
SKIP

〈V | H | fence;p〉 →ns 〈V | H | p〉
FENCE

JeKV = v
〈V | H | x := e;p〉 →ns 〈V[x 7→ v] | H | p〉

ASSIGN

JaKV = a′ H(a′) = v
〈V | H | read [a] x;p〉 →ns 〈V[x 7→ v] | H | p〉

READ

JaKV = a′ V(x) = v
〈V | H | write [a] x;p〉 →ns 〈V | H[a′ 7→ v] | p〉

WRITE
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Nonspeculative Semantics ii

JbKV 6= 0
〈V | H | if b then p1 else p2 end;p〉 →ns 〈V | H | p1 ++p〉

IFTRUE

JbKV = 0
〈V | H | if b then p1 else p2 end;p〉 →ns 〈V | H | p2 ++p〉

IFFALSE

〈V | H | while b do p1 finally p2 end;p〉
→ns 〈V | H | if b then (p1 ++while b do p1 finally p2 end) else p2 end;p〉

WHILE

〈V | H | []〉 →ns 〈V | H | []〉
TERM
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Speculative Semantics i

decr(n) :=
{

⊥ if n = ⊥
n− 1 otherwise

wndw(n) :=
{

ω if n = ⊥
n− 1 otherwise

no-rollback(n) := n > 0 ∨ n = ⊥ zero-out(n) :=
{

⊥ if n = ⊥
0 otherwise

no-rollback(n)
〈n | V | H | skip;p〉 :: S →sp 〈decr(n) | V | H | p〉 :: S

AMSKIP

32



Speculative Semantics ii

no-rollback(n)
〈n | V | H | fence;p〉 :: S →sp 〈zero-out(n) | V | H | p〉 :: S

AMFENCE

no-rollback(n) JeKV = v
〈n | V | H | x := e;p〉 :: S →sp 〈decr(n) | V[x 7→ v] | H | p〉 :: S

AMASSIGN

no-rollback(n) JaKV = a′ H(a′) = v
〈n | V | H | read [a] x;p〉 :: S →sp 〈decr(n) | V[x 7→ v] | H | p〉 :: S

AMREAD

no-rollback(n) JaKV = a′ V(x) = v
〈n | V | H | write [a] x;p〉 :: S →sp

⟨
decr(n) | V | H[a′ 7→ v] | p

⟩
:: S

AMWRITE
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Speculative Semantics iii

no-rollback(n)
〈n | V | H | while e do p1 finally p2 end; 〉 :: S

→sp 〈decr(n) | V | H | if e then (p1 ++[while e do p1 finally p2 end]) else p2 end;p〉
:: S

AMWHILE

no-rollback(n) JbKV 6= 0
〈n | V | H | if b then p1 else p2 end;p〉 :: S

→sp 〈wndw(n) | V | H | p2 ++p〉 :: 〈decr(n) | V | H | p1 ++p〉 :: S

AMIFTRUE
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Speculative Semantics iv

no-rollback(n) JbKV = 0
〈n | V | H | if b then p1 else p2 end;p〉 :: S

→sp 〈wndw(n) | V | H | p1 ++p〉 :: 〈decr(n) | V | H | p2 ++p〉 :: S

AMIFFALSE

〈0 | V | H | p〉 :: S →sp S
AMROLLBACK

n 6= ⊥ ∧ n > 0
〈n | V | H | []〉 :: S →sp S

AMROLLBACKT

〈⊥ | V | H | []〉 :: S →sp 〈⊥ | V | H | []〉 :: S
AMTERM

[] →sp []
AMTERM’
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Patrignani and Guarnieri [2021]: Verifying Mitigations Using Speculative Safety

Extend the semantics with taint tracking (Safe / Unsafe)

Speculating? + Secret Data?

Observation Taint

Speculative safety: All executions of a program only produce safe observations.

Speculative safety implies speculative noninterference
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Patrignani and Guarnieri [2021]: Verifying Mitigations Using Speculative Safety

• Taint tracking ignores implicit flows

• only correct when control flow is observable to the attacker

• Speculatively noninterferent code may not be speculatively safe:

read [1] x;if x ≥ 0 then read [x] y else read [x] y end;write [1] y
• Speculative reads may be tainted unsafe
• Speculatively noninterferent, as all the same read will be performed
nonspeculatively

• Our approach does not have these limitations
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Relaxed Insertion of Fences

Additional simplifying restrictions:

• Assignments within the speculation window
• Manually inserted fence instructions within the speculation window
• Branches shorter than the speculation window
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